Introduction to Disruptions

Slides from Michael Lehnen – ITER Science and Technology Meeting 3rd February 2014

© 2014, ITER Organization

Presented (with minor adaptations) by Eric Nardon, CEA Cadarache at the 9th ITER International School, 20th-24th March 2017

Disclaimer: The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.

- □ What is a disruption?
- □ What causes disruptions?
- □ Why worry about disruptions?
- □ How to deal with disruptions?

Disruptions in a nutshell – not at all a complete picture, simplifications everywhere

Fast accidental loss of plasma thermal and magnetic energy

DINA simulation

DINA simulation

MHD 3D simulation NIMROD, V. Izzo et al., US-DA TA

Thermal Quench

A. Loarte, Heat and Nuclear Load Specifications, ITER_D_2LULDH v2.4

Current quench duration is determined by electron temperature, itself determined by impurity radiation

Current quench duration is determined by electron temperature, itself determined by impurity radiation

Current quench duration is determined by electron temperature, itself determined by impurity radiation

movie: 0.04 seconds

JET#76541 t=60.053565s

MagnetoHydroDynamic (MHD) instabilities

P. de Vries, Nuclear Fusion 2009

Vertical Displacement Event – VDE

Elongated plasmas are vertically unstable and need careful position control ITER can control vertical excursion < 16 cm (in-vessel coils)

Vertical Displacement Event – VDE

Elongated plasmas are vertically unstable and need careful position control ITER can control vertical excursion < 16 cm (in-vessel coils)

about 0.5 seconds (wall currents)

Low safety factor

- □ High density (or radiation)
- High plasma pressure
- Pressure and current profiles
- UFOs
- Loss of plasma position control (VDE)

Operating close to the limits to drive performance *increases the risk of disruptions*

But the plasma can also come close to these limits during ramp-up, scenario exit and ramp-down

□ Heat loads

Electro-magnetic loads

□ Runaway electrons

Heat loads

resistive time scales (tearing mode)

Heat loads

ideal MHD (kink) and VDEs

Heat loads

A. Loarte, Heat and Nuclear Load Specifications, ITER D 2LULDH v2.4

Why worry about disruptions?

Surface temperature increase during fast events:

 $\Delta T \sim \frac{energy}{\sqrt{time} \times area}$

energy $\approx 280 \text{ MJ} (80\%)$ time $\approx 1 \text{ ms}$

R. Pitts, 13 Jan 2014: *area* (*divertor*) $\approx 1 - 5m^2$

experiments show area broadening: *area* (*divertor*) $\approx 7 - 35m^2$

W divertor targets during TQ of MD

Surface temperature increase during fast events:

$$\Delta T \sim 250 - 1250 \frac{\text{MJ}}{\text{m}^2 \sqrt{\text{s}}}$$

Melting limit for tungsten: $\Delta T \approx 2700^{\circ} \text{C} \sim 50 \frac{\text{MJ}}{\text{m}^2 \sqrt{\text{s}}}$

Electro-magnetic loads: eddy currents

Electro-magnetic loads: eddy currents

<u>fast</u> current decay **>** <u>high</u> eddy current forces

Electro-magnetic loads: halo currents

Electro-magnetic loads: halo current asymmetries

iter china eu india japan korea russia usa

Why worry about disruptions?

The design of Safety Important Class (SIC) components – like the vacuum vessel – has to ensure their safety function for all foreseeable electro-magnetic loads during disruptions.

These loads will be monitored during the progressive increase of plasma current to ensure safe operation.

Electric field 20V/m \approx Resistance 50µΩ x Current 15 MA / L 40 m

Electric field 20V/m \approx Resistance 50µ Ω x Current 15 MA / L 40 m

Electric field 20V/m \approx Resistance 50µ Ω x Current 15 MA / L 40 m

Electric field 20V/m \approx Resistance 50µΩ x Current 15 MA / L 40 m

Why worry about disruptions?

JET – runaway generation during a disruption

Runaway impact

high velocity (speed of light): spatially very localised

- □ high electron energies: deep penetration
- □ total energies of up to 300 MJ in ITER cannot be excluded

*Based on simple geometrical considerations

Prediction Avoidance Mitigation J. Vega's lecture -MHD mode control: F. Volpe's on Friday lecture on Thursday -Discharge management strategies (e.g. fast discharge termination) 20 10 plasma current [MA] 0 400 200 thermal energy [MJ]

20

40

60

80

100

time [milliseconds]

120

140

160

180

200

0

0

Thermal load mitigation

Massive injection of high Z impurities like neon or argon Radiation distributes energy over larger area

Electro-magnetic load mitigation

Control of current decay rate / impurity radiation

Runaway electron mitigation

Increase electron density

Runaway electron mitigation

Energy dissipation by scattering on high-Z nuclei*

The challenge of disruption mitigation is to simultaneously achieve all three goals:

- □ Thermal load mitigation: 90% radiation
- \Box Electro-magnetic load mitigation: 50 ms < t_{CQ} < 150 ms
- \Box Runaway electron mitigation: $I_{RE} << 1MA$

- □ ITER will face considerable disruption loads reliable and efficient prediction, avoidance and mitigation is mandatory
- Disruption physics are a rich topic, in which many open questions still exist, due to:
 - ✓ Complexity: non-linear MHD, runaway electrons, ...
 - ✓ Challenge of making measurements
 - \Rightarrow Lots of interesting work for young motivated physicists!
- □ Physics basis is continuously being improved
- Wherever possible, allow for enough <u>margin</u> in component design and enough <u>flexibility</u> of mitigation systems to ensure that ITER will be able to operate at nominal values

Extra slides

Definition of load limits: halo current

